THE LEAF LIPIDS OF SOME CONIFER SPECIES

G R. JAMIESON and E H. REID

Chemistry Department, The Paisley College of Technology, Paisley, Scotland

(Received 3 June 1971)

Abstract—Conifer leaf lipids contain, in addition to the fatty acids found in angiosperms, a series of polyunsaturated acids with Δ^5 olefinic unsaturation. All the species contain Δ^5 C_{20} acids and the members of the family, Pinaceae, contain, in addition a series of C_{18} Δ^5 acids. Significant amounts of a saturated C_{17} branched-chain acid were present in many of the species. The distribution of polyunsaturated acids among certain lipid classes was investigated and it was found that C_{16} and C_{18} polyunsaturated acids with $\omega 3$ unsaturation are concentrated in the galactosyl diglycerides

INTRODUCTION

It has been established that the major polyunsaturated acids present in angiosperm leaf lipids are linolenic (18 3 ω 3) and linoleic (18 2 ω 6) acids. Many angiosperm species have present, in addition, varying proportions of hexadeca-7,10,13-trienoic (16 3 ω 3) acid¹ and, in two families, Boraginaceae and Caryophyllaceae, significant amounts of γ -linolenic (18.3 ω 6) and octadeca-6,9,12,15-tetraenoic (18.4 ω 3) acids have been found ^{2.3} All these acids are of the methylene-interrupted type. Neither non-methylene-interrupted nor C₂₀ polyunsaturated acids have been reported as constituents of angiosperm leaf lipids

The presence of C₂₀ and C₂₂ methylene-interrupted polyunsaturated acids have been found in the lipids of lower plants⁴⁻⁶ and also unusual non-methylene-interrupted C₂₀ have been found in the leaf lipids of Gymnosperms and Equisetales.^{4,7} During a survey of leaf lipids it was found that the leaves of *Picea abies* contained unusual C₁₈ and C₂₀ non-methylene-interrupted polyunsaturated acids and an investigation was undertaken of the leaf lipids of a range of conifer species to find the distribution of these unusual acids among conifers and also to compare the distribution of polyunsaturated acids among certain classes of conifer lipids.

RESULTS AND DISCUSSION

The fatty acid compositions of the total lipids from the leaves of 34 conifer species are shown in Table 1. The conifer species are similar to angiosperms in that the major constituent fatty acids are linolenic, linoleic and palmitic acids. All the conifer species studied contained small amounts of $16~3\omega 3$, a lower homologue of linolenic acid. The conifer leaf lipids differ from those of angiosperms in having present various C_{20} polyunsaturated acids including non-methylene-interrupted polyunsaturated acids with Δ^5 olefinic unsaturation. In addition, all the members of the Pinaceae studied contained a series of C_{18} Δ^5 polyunsaturated acids, $18~2,\Delta^{5,9}$ $18~3,\Delta^{5,9,12}$ and $18~4\Delta^{5,9,12,15}$. This series of C_{18} acids has an additional Δ^5 olefinic bond inserted in the common plant acids, $18~1\omega 9$, $18~2\omega 6$, $18\cdot 3\omega 3$. It

- ¹ G R JAMIESON and E H REID, Phytochem, 10, 1837 (1971)
- ² G R. Jamieson and E H Reid, Phytochem. 8, 1489 (1969)
- ³ G R Jamieson and E H Reid, Phytochem 10, 1575 (1971)
- ⁴ G. R. Jamieson, Ph D. Thesis, University of London (1970)
- ⁵ B W. Nichols, Phytochem 4, 765 (1965).
- 6 W. F HAIGH R SAFFORD and A T JAMES, Biochim Biophys Acta 176, 647 (1969)
- ⁷ H Schlenk and J L Gellerman, J Amer Oil Chem Soc. 42, 504 (1965)

TABLE 1 FATTY ACID COMPOSITION OF

	12 0	13 0	14 0	15 0 br	15 0	16 0	16 1 ω7+9	16 1 ω13t	16 2 ω6	16 3 ω3	17 0 br	17 0
Pinaceae												
Abies procera	01	tr	09	07	05	129	03	07	tr	01	38	03
A grandis	02	tr	11	06	0.5	126	03	09	tr	02	3 1	03
A concolor	10	02	12	11	04	10 1	07	1.3	tr	02	45	04
A amabilis	06	tr	16	0.8	02	97	07	09	tr	02	42	04
A nordmanniana	09	0 1	16	03	11	10 1	0 4	11	tr	13	41	0 4
A veitchii	15	03	26	12	04	13 1	0 2	13	02	08	48	04
A alba	02	tr	11	06	tr	98	0 1	0.9	tr	10	28	tr
Pseudotsuga menzeu	03	tr	1.5	06	0.5	13 3	0.4	07	tr	3 5	29	02
Picea abies	14	tr	44	tr	0.1	12.5	0.2	07	01	0.9	$\frac{1}{2}$ 1	0 2
P sitchensis	2 3	0 1	3 5	tr	0.1	17 6	0.5	0.7	01	1.5	1 3	0 2
P obovata	1.1	0.1	2.5	0.1	0.1	120	0.2	0.5	03	1.5	3 5	03
P engelmannıı	47	tr	37	0 2	02	14 2	12	09	02	14	24	0.5
P orientalis	40	tr	3 1	0.1	02	15 5	0 2	0.9	0 2	11	27	06
P mariana	40	01	29	0.3	03	13.8	02	10	0.1	12	26	03
Tsuga heterophylla	0.2	tr	17	0.2	0.4	15 9	0.5	10	tr	0 2	24	02
T canadensis	03	tr	15	01	03	12 2	02	07	tr	03	13	02
Larıx decidua	02	tr	14	_	0.2	13.5	14	16	0.6	4 3	11	0.3
L leptolepis	02	tr	19		02	15 8	0.5	19	02	48	07	04
Cedrus deodara	50	0 2	23		0.3	15 7	02	0 7	0 2	4 2	16	04
Pinus sylvestris	17	tr	48		02	120	03	04	0 2	12	0.5	tr
P contorta	24	tr	23		01	11 0	01	0.3	01	10	02	01
P nigra	8 7	0 2	79		02	11 2	07	08	0 2	40	03	04
Taxodiaceae	0,	0 2	• • •		02	11 ~	0,	0.0	0 2	70	U J	0 -
Sequoia gigantea	19	0 4	15		0 1	160	0 1	0 5	tr	3 1	0 1	01
Cupressaceae												
Thuja plicata	08	0 1	15		0 1	19 3	03	06	04	2 1	01	04
Chaemaecyparis												
pisifera	03	tr	06		0 1	149	0.5	02	02	16	03	04
C thyoides	06	tr	2 5		02	123	0 2	04	0 1	16	03	0 5
C lawsoniana	20	tr	39		0 1	158	04	0 4	tr	19	0 1	03
Cupressus sempervirens	18	01	89		0 1	147	08	04	tr	3 3	04	0.3
C nootkatensis	0.5	tr	15		0 2	189	01	0.3	tr	21	01	02
Cryptomeria saponica	0.5	04	18		0 1	15 4	18	11	tr	2 5	11	03
Juniperus communis	0.5	tr	17	-	03	18 4	03	10	02	41	02	04
J virginiana	3 7	02	47		01	160	01	03	tr	12	04	02
Taxaceae			•								٠.	
Taxa baccata	01	tr	14		0.3	153	0.3	0.4	tr	5 8	0.2	0.3

was also found that when one member of a genus contained these C_{18} Δ^5 acids then all the members studied had similar amounts of these acids. The presence of Δ^5 acids in plant tissues is unusual but various acids of this type have been found recently in seed oils, 8-12 in Dictyostelium discoideum lipids¹³ in pine bark, 14 and in the leaf lipids of Equisetales 2,7

⁸ R G. Powell, C R Smith, Jr and I A Wolff, Lipids 2, 172 (1967).

⁸ TORU TAKAGI, J. Am Oil Chem Soc 41, 516 (1964).

¹⁰ M K BHATTY and B M CRAIG, Can J Biochem 44, 311 (1966).

¹¹ R W MILLER, M E DAXENBICHLER, F R EARLE and H S GENTRY, J Am Oil Chem Soc 41, (1964)

¹² C R SMITH, JR, R KLEIMAN and I A WOLFF, Lipids 3, 37 (1968)

13 F DAVIDOFF and E D KORN, Biochem Biophys Res Commun 9, 64 (1962)

¹⁴ J W Rowe and J H Scroggins, J Am Chem Soc 29, 1554 (1964)

THE TOTAL LIPIDS OF CONIFER LEAVES

18:0	18 1	18 2 Δ ^{5,9}	18 2 ω6	$^{18}_{\Delta^{5,9,12}}$	18 3 ω3	18 4 Δ ^{5,9,12,15}	20 0 20 1	20·2 ω6	$20_{\Delta^{5,11,14}}^{203}$	20 3 ω6	20:4 Δ ^{5,11,14,17}	22 0
29	11 3	08	167	3 3	34 4	4 1	11	0 4	20	0 5	1 1	11
27	14 7	13	12 4	20	38 1	3 5	07	02	20	03	11	12
8 0	4 5	11	13 8	4 3	38 1	39	08	07	56	03	26	24
11	60	18	12 7	3 7	42 5	4 4	04	04	3 4	0 5	20	18
0.5	66	11	119	22	44 4	3 3	0 5	06	3 4	10	14	17
12	78	15	95	28	31 4	78	0.5	06	3 4	08	39	2 4
10	61	11	108	21	50 9	3 4	03	03	3 3	0.5	29	08
1.0	81	07	119	16	40 8	28	08	02	4 5	03	21	11
0.5	50	09	11 6	42	43 7	58	0.5	tr	24	03	09	16
10 06	11 3 5 4	14	11 0 14 5	3 5 4 9	35 1 37 7	47 39	0.5	01	16	02	06	12
	38	05 08	14 5	33	37 4		04	05	4 5	04	23	22
09 11	33	08	128	3 3 4 2	37 4 37 2	37 43	09	03	3 1 3 7	0 4 0 2	08 08	15 18
12	37	0.5	13 3	42	34 5	4 2	12	03	46	02	22	27
16	44	03	90	18	49 7	24	15	03	27	06	19	11
22	29	01	11 4	11	51 2	07	12	04	61	03	32	21
16	38	09	120	25	44 0	26	05	03	3 2	02	11	27
12	40	11	108	27	46 0	40	04	02	25	06	09	16
0.5	36	0.5	99	13	43 3	26	04	02	3.4	04	19	1.2
07	72	02	15 2	43	34 1	3 2	03	16	83	11	20	0.5
1 2	176	02	22 0	22	31 0	1.7	06	06	3 5	02	10	06
09	27	0 4	8 2	19	35 0	19	09	07	67	06	1 3	43
11	17		16 1		43 4	_	1 1	0 5	6.3	0 2	3 7	2 1
1-4	22		15 6		45 0	_	16	0 2	3.5	01	3 5	1 2
1 4	11	_	15 4	_	49 6		1 3	0.3	59	0 2	28	29
1 2	16		124		44 0		26	06	8 7	0.3	77	22
1 2	84		158		39 4		07	07	44	0.3	3 5	08
1 2	29	_	161		40 4		06	03	4 1	02	18	16
13	36	-	23 2		33 6		09	07	7.3	0.2	29	27
09	21	_	154		45 6		09	02	42	04	2 1	30
10	27	_	38		51 3		02	01	20	0.1	1 4	03
16	3 6	-	14 0		34 4		1 5	0 5	91	0 1	4 3	40
1 2	8 2	_	11 3	_	44 5	_	09	0 5	27	03	3 8	2 4

Many of the conifer species studied contained considerable proportions of a saturated C_{17} branched-chain acid and from the chromatographic behaviour of this acid it is probably the *anteiso* isomer ¹⁵ The distribution of this acid among the different genera is shown in Fig. 1. Smaller amounts of a similar C_{15} acid were found in four of the genera studied These branched-chain acids are found only in trace amounts in angiosperm leaf lipids.

It has been shown² that, in the leaf lipids of angiosperm species, there are variations in the proportions of polyunsaturated acids during the growing season of a plant and a study

¹⁵ G R. Jamieson, in Topics in Lipid Chemistry (edited by F D Gunstone), Vol. 1, Logos Press, London (1970)

TABLE 2. FATTY ACID COMPOSITION OF

	12 0	14 0	16 0	16 1 ω7 + 9	16 1 ω13t	16 2 ω6	16 3 ω3	17 0 br	18 0	18 1
Picea abies					- ,,,,,					
Total	15	4 1	12 5	0 2	06	0 1	07	2 1	06	50
MGDG	02	07	20	01	_	0 1	3 5	03	06	12
DGDG	08	20	117	tr	_	02	16	20	17	17
Polar	0 4	10	180	0 1	09	tr	tr	3 1	20	70
Pinus sylvestris										
Total	17	48	120	03	04	02	12	0.5	07	72
TG	24	3 4	20 2	04		tr	04	3 2	17	120
DG	22	40	36 7	04		01	8 4	12	10	76
MGDG	06	09	49	03	_	06	12 7	01	0.5	18
DGDG	15	24	10 5	01		03	07	07	0.8	14
Polar	10	1 5	21 0	0 2	1 3	0 4	0 7	11	1 2	3 8
Larıx decidua										
Total	06	10	13 8	03	14	0 1	3 1	23	11	4 3
TG	11	13	150	06	_	tr	0 2	3 7	13	8.5
DG	10	10	29 7	06		0.1	79	16	09	6.5
MGDG	01	02	20	02		tr	12 7	07	0 2	0.5
DGDG	04	02	10 4	02		02	2 8	16	11	07
Polar	0 3	0 8	15 8	03	29	02	0 8	18	2 1	74
Taxa baccata										
Total	01	18	173	03	06	tr	61	03	10	76
TG	06	21	18 3	0.5		tr	0.5	08	18	164
DG	0.8	$\frac{1}{2}$ $\frac{1}{3}$	24 2	06		02	68	05	12	5 4
MGDG	tr	04	4.5	02		tr	159	01	0.5	20
DGDG	01	14	10 6	02		01	18	02	08	18
Polar	04	16	198	02	12	0 2	07	10	17	64

 $tr_-trace; TG_-triglycerides; DG_-diglycerides, MGDG_-monogalactosyl \ diglycerides \\ DGDG_-digalactosyl \ diglycerides$

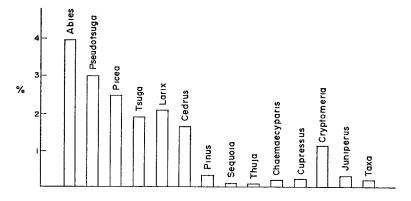


Fig 1 Distribution of 17 0 anteiso among conifer genera

DIFFERENT LIPID CLASSES OF CONIFER LEAVES

18 2 Δ ^{5,9}	18 2 ω6	18 3 Δ ^{5,9,12}	18 3 ω3	$^{18\ 4}_{\Delta^{5,9,12,15}}$	20 0 20 1	20 2 ω6	$20_{\Delta^{5,11,14}}^{203}$	20 3 ω6	$20\ 4$ $\Delta^{5,11,14,17}$	22 0 22 1
07	12 2	49	41 8	66	0.5	tr	28	02	11	17
03	5 1	1 4	77 6	69	tr	tr	tr	tr	tr	tr
02	63	03	68 30	24	tr	tr	02	tr	0 1	08
08	25 0	3 3	25 8	40	0 2	01	5 1	0 4	0 8	20
0 2	15 2	4 3	34 1	3 2	03	16	8 3	11	20	0.5
0 2	13 5	16	26 8	17	18	06	67	0.8	12	16
16	47	19	21 6	39	08	02	2 1	06	0.8	02
48	3 7	15	54 8	128	tr	tr	tr	tr	tr	tr
39	5 1	12	62 8	57	10	0 1	12	tr	06	tr
16	19 6	3 3	18 0	46	19	3 5	8 5	3 6	22	10
03	19 8	4 5	38 6	28	07	04	2 1	06	10	12
0.5	26 2	13 6	19 3	17	14	0.5	28	03	04	16
08	10 7	21	29 7	3 2	08	02	1 2	06	06	08
01	29	06	71 0	8 8	tr	tr	tr	tr	tr	tr
tr	40	04	71 6	16	12	0 1	07	01	1 3	14
06	32 2	61	17 2	18	09	1 1	4 5	0 8	1 4	10
	164		37 9		08	0 4	28	04	4 2	20
_	196		28 1		14	0.5	31	04	31	28
	53	_	47 3	_	10	02	16	04	18	04
	43	_	71.9	_	0.2	tr	tr	tr	tr	tr
_	67		72 7		0.4	02	13	01	16	tr
	27 6		198		13	10	61	08	71	3.1

was made of the fatty acid composition of the leaf lipids of larch (Larix decidua) from mid-April to the end of October, 1970. The variations in the proportions of $16.3\omega 3 + 18.3\omega 3$ and $18.2\omega 6$ are shown in Fig. 2. These variations are similar to those obtained for angiosperm species. There was a rapid increase in the proportion of $\omega 3$ acids during the early part of the growing season with a subsequent levelling out in the middle part of the season. This increase was accompanied by a corresponding decrease in the $\omega 6$ acids which also level out in mid-season. Throughout the growing season there was little variation in the proportions of the Δ^5 C₁₈ and C₂₀ acids.

The fatty acid compositions of several lipid classes from 4 conifer species are shown in Table 2. It is found that the C_{16} and C_{18} polyunsaturated $\omega 3$ acids are concentrated in the galactosyl diglycerides accounting for 78 7-92 5% and 68 8-76 0% of the total acids of the monogalactosyl and digalactosyl diglycerides respectively. These total amounts of $\omega 3$ acids are slightly lower than those found in the galactosyl diglycerides from angiosperm species. Although 20 $4\Delta^{5,11,14,17}$ is an $\omega 3$ acid it is found only in trace amounts in the monogalactosyl diglycerides and both the Δ^5 C_{20} acids are preferentially concentrated in the polar lipids. This is similar to the distribution of these Δ^5 C_{20} acids in the lipid classes of Equisetum arvense.

The distribution of fatty acids among the different lipid classes of conifers is similar to PRYTO 11/1-8

Fig. 2 Variations in the proportions of $\omega 3$ and $\omega 6$ acids during the growing season of Larix decidua

that of angiosperms as follows: (i) $16 \cdot 3\omega 3$ is preferentially concentrated in the monogalactosyl diglycerides and it would appear that, in this lipid class, $18 \ 3\omega 3$ is replaced in part by the lower homologue; (ii) the diglyceride fraction contains a considerable amount of $16 \ 3\omega 3$, (iii) the trans acid, $16 \ 1\omega 13t$, is found only in the polar lipid fraction; (iv) the highest proportions of saturated acids are found in the triglyceride and diglyceride fractions; (v) the MGDG fraction has the highest degree of unsaturation (Table 3)

TABLE 3 DEGREE OF UNSATURATION OF THE FATTY ACIDS OF DIFFERENT LIPID CLASSES

	Average double bonds per mole fatty acıd								
	MGDG	DGDG	Polar	TG	DG				
Conifers									
Picea abies	29	2 3	18	_					
Pınus sylvestris	2 7	24	16	16	14				
Larıx decidua	3 0	2 7	17	18	17				
Taxa baccata	2 7	2 5	17	17	19				
Mean	2 8	2 5	17	1 7	17				
Pteridophyta									
Equisetum arvense4	27	22	1.7						
Angiosperms									
Containing 16 3ω3 ^t	29	2 7	19	18	15				
Containing 18 4\omega3^2,3	3 1	2 7	17	-					

EXPERIMENTAL.

Samples of *Picea abies*, *Pinus sylvestris*, *Larix decidua* and *Taxa baccata* were collected in the surrounding districts of Paisley. Samples of the other conifer species were obtained from the Forestry Commission at Inverness and the Lael Forest, Wester Ross. Lipids were extracted and separated into classes by methods described.^{3,4} The acids were tentatively identified using chromatographic and degradative methods already published.⁴ The saturated C₁₅ and C₁₇ branched-chain acids were tentatively identified using chromatographic methods and tables of ECL values ¹⁵

GLC analyses were carried out on a PE 800 chromatograph with polyester coated open tubular columns of different polarity.

Acknowledgements—Thanks are due to Mr W. Gray Kerr, Forestry Commission, Inverness, and Mr. W F. Sutherland. Forestry Commission. Lael Forest, for supplying identified samples of many confer species

Key Word Index—Gymnospermae; chemotaxonomy; leaf lipids, Δ⁵ fatty acids; galactosyl diglycerides.